Highest vectors of representations (total 7) ; the vectors are over the primal subalgebra. | \(-g_{15}+g_{14}+g_{13}\) | \(g_{5}-g_{3}+g_{2}\) | \(g_{18}\) | \(g_{17}\) | \(g_{19}\) | \(g_{29}\) | \(g_{22}\) |
weight | \(\omega_{3}\) | \(\omega_{4}\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{3}+\omega_{4}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{4}\) |
Isotypical components + highest weight | \(\displaystyle V_{\omega_{3}} \) → (0, 0, 1, 0) | \(\displaystyle V_{\omega_{4}} \) → (0, 0, 0, 1) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1, 0, 0) | \(\displaystyle V_{\omega_{3}+\omega_{4}} \) → (0, 0, 1, 1) | \(\displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}} \) → (1, 1, 1, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}+\omega_{4}} \) → (1, 1, 0, 1) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
| Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{3}\) \(-\omega_{3}+\omega_{4}\) \(-\omega_{4}\) | \(\omega_{4}\) \(\omega_{3}-\omega_{4}\) \(-\omega_{3}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{3}+\omega_{4}\) \(-\omega_{3}+2\omega_{4}\) \(2\omega_{3}-\omega_{4}\) \(0\) \(0\) \(-2\omega_{3}+\omega_{4}\) \(\omega_{3}-2\omega_{4}\) \(-\omega_{3}-\omega_{4}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) \(-\omega_{1}+2\omega_{2}+\omega_{3}\) \(2\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{3}\) \(2\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{1}+\omega_{2}-\omega_{4}\) \(-2\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(-\omega_{3}+\omega_{4}\) \(-\omega_{1}+2\omega_{2}-\omega_{4}\) \(-\omega_{3}+\omega_{4}\) \(2\omega_{1}-\omega_{2}-\omega_{4}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(-2\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{1}-2\omega_{2}-\omega_{3}+\omega_{4}\) \(-\omega_{4}\) \(-\omega_{4}\) \(-\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}\) \(-2\omega_{1}+\omega_{2}-\omega_{4}\) \(\omega_{1}-2\omega_{2}-\omega_{4}\) \(-\omega_{1}-\omega_{2}-\omega_{4}\) | \(\omega_{1}+\omega_{2}+\omega_{4}\) \(-\omega_{1}+2\omega_{2}+\omega_{4}\) \(2\omega_{1}-\omega_{2}+\omega_{4}\) \(\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{4}\) \(-\omega_{1}+2\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{4}\) \(2\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-2\omega_{1}+\omega_{2}+\omega_{4}\) \(\omega_{1}-2\omega_{2}+\omega_{4}\) \(\omega_{3}-\omega_{4}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(\omega_{3}-\omega_{4}\) \(2\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}+\omega_{4}\) \(-2\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{1}-2\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{3}\) \(-\omega_{3}\) \(-\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}\) \(-2\omega_{1}+\omega_{2}-\omega_{3}\) \(\omega_{1}-2\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}-\omega_{3}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{3}\) \(-\omega_{3}+\omega_{4}\) \(-\omega_{4}\) | \(\omega_{4}\) \(\omega_{3}-\omega_{4}\) \(-\omega_{3}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{3}+\omega_{4}\) \(-\omega_{3}+2\omega_{4}\) \(2\omega_{3}-\omega_{4}\) \(0\) \(0\) \(-2\omega_{3}+\omega_{4}\) \(\omega_{3}-2\omega_{4}\) \(-\omega_{3}-\omega_{4}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) \(-\omega_{1}+2\omega_{2}+\omega_{3}\) \(2\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{3}\) \(2\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{1}+\omega_{2}-\omega_{4}\) \(-2\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(-\omega_{3}+\omega_{4}\) \(-\omega_{1}+2\omega_{2}-\omega_{4}\) \(-\omega_{3}+\omega_{4}\) \(2\omega_{1}-\omega_{2}-\omega_{4}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(-2\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{1}-2\omega_{2}-\omega_{3}+\omega_{4}\) \(-\omega_{4}\) \(-\omega_{4}\) \(-\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}\) \(-2\omega_{1}+\omega_{2}-\omega_{4}\) \(\omega_{1}-2\omega_{2}-\omega_{4}\) \(-\omega_{1}-\omega_{2}-\omega_{4}\) | \(\omega_{1}+\omega_{2}+\omega_{4}\) \(-\omega_{1}+2\omega_{2}+\omega_{4}\) \(2\omega_{1}-\omega_{2}+\omega_{4}\) \(\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{4}\) \(-\omega_{1}+2\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{4}\) \(2\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-2\omega_{1}+\omega_{2}+\omega_{4}\) \(\omega_{1}-2\omega_{2}+\omega_{4}\) \(\omega_{3}-\omega_{4}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(\omega_{3}-\omega_{4}\) \(2\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}+\omega_{4}\) \(-2\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{1}-2\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{3}\) \(-\omega_{3}\) \(-\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}\) \(-2\omega_{1}+\omega_{2}-\omega_{3}\) \(\omega_{1}-2\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}-\omega_{3}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{\omega_{3}}\oplus M_{-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{4}}\) | \(\displaystyle M_{\omega_{4}}\oplus M_{\omega_{3}-\omega_{4}}\oplus M_{-\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{\omega_{3}+\omega_{4}}\oplus M_{-\omega_{3}+2\omega_{4}}\oplus M_{2\omega_{3}-\omega_{4}}\oplus 2M_{0}\oplus M_{-2\omega_{3}+\omega_{4}} \oplus M_{\omega_{3}-2\omega_{4}}\oplus M_{-\omega_{3}-\omega_{4}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}+2\omega_{2}+\omega_{3}} \oplus M_{2\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}} \oplus 2M_{\omega_{3}}\oplus M_{\omega_{1}+\omega_{2}-\omega_{4}}\oplus 2M_{-\omega_{3}+\omega_{4}}\oplus M_{-2\omega_{1}+\omega_{2}+\omega_{3}} \oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{4}}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{4}} \oplus M_{-2\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{\omega_{1}-2\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}} \oplus 2M_{-\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{-2\omega_{1}+\omega_{2}-\omega_{4}} \oplus M_{\omega_{1}-2\omega_{2}-\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{4}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{4}}\oplus M_{-\omega_{1}+2\omega_{2}+\omega_{4}}\oplus M_{2\omega_{1}-\omega_{2}+\omega_{4}} \oplus M_{\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}}\oplus 2M_{\omega_{4}}\oplus M_{\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{2}+\omega_{3}-\omega_{4}} \oplus M_{2\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{-2\omega_{1}+\omega_{2}+\omega_{4}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{4}} \oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{3}}\oplus 2M_{\omega_{3}-\omega_{4}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{4}}\oplus 2M_{-\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}} \oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{-2\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}-\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{\omega_{3}}\oplus M_{-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{4}}\) | \(\displaystyle M_{\omega_{4}}\oplus M_{\omega_{3}-\omega_{4}}\oplus M_{-\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{\omega_{3}+\omega_{4}}\oplus M_{-\omega_{3}+2\omega_{4}}\oplus M_{2\omega_{3}-\omega_{4}}\oplus 2M_{0}\oplus M_{-2\omega_{3}+\omega_{4}} \oplus M_{\omega_{3}-2\omega_{4}}\oplus M_{-\omega_{3}-\omega_{4}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}+2\omega_{2}+\omega_{3}} \oplus M_{2\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}} \oplus 2M_{\omega_{3}}\oplus M_{\omega_{1}+\omega_{2}-\omega_{4}}\oplus 2M_{-\omega_{3}+\omega_{4}}\oplus M_{-2\omega_{1}+\omega_{2}+\omega_{3}} \oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{4}}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{4}} \oplus M_{-2\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{\omega_{1}-2\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}} \oplus 2M_{-\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{-2\omega_{1}+\omega_{2}-\omega_{4}} \oplus M_{\omega_{1}-2\omega_{2}-\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{4}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{4}}\oplus M_{-\omega_{1}+2\omega_{2}+\omega_{4}}\oplus M_{2\omega_{1}-\omega_{2}+\omega_{4}} \oplus M_{\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}}\oplus 2M_{\omega_{4}}\oplus M_{\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{2}+\omega_{3}-\omega_{4}} \oplus M_{2\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{-2\omega_{1}+\omega_{2}+\omega_{4}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{4}} \oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{3}}\oplus 2M_{\omega_{3}-\omega_{4}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{4}}\oplus 2M_{-\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}} \oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{-2\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}-\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}}\) |